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- Previous attempts to derive the homogeneous closed form solution to the problem
of the dynamic motion of a zero bending rigidity cylinder in a viscous stream

have expressed the solution as an infinite series involving Bessel functions of

complex argument and order, which are often impractical to evaluate because of

their complexity. Moreover, when these solutions are extended to nonhomogeneous
sitq~ations, a harmonic time dependence is assumed that requires '"forcing! the
system by an arbitrary time function using multiple solutions combined in the
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Fourier sense. This paper presents a general purpose numerical treatment
formulated to overcome these difficulties. The numerical approach is based
on finite difference schemes applied in conjunction with powerful numerical
ordinary differential equation methods. The theory is examined with respect
to consistency, stability, and convergence of these numerical procedures.
A numerical example is included to demonstrate the validity of the treatment.
Although an explicit boundary condition is absent from this study, a derived
boundary condition is demonstrated to be adequate.
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A NUMERICAL TREATMENT OF THE DYNAMIC MOTION OF A

ZERO BENDING RIGIDITY CYLINDER IN A VISCOUS STREAM

1. INTRODUCTION

Paidoussis1 worked out a solution to the dynamic motion problem.

Ortloff and Ives2 studied a special case of the same problem and expressed

their solution in the form of an infinite series involving Gamma and Bessel

functions. Both the orders and the arguments of Bessel functions are

generally complex and can be large in magnitude. Furthermore, evaluation of a

Bessel function of complex order is laborious and time-consuming, and accuracy

cannot be assured. When the solution proposed by Ortloff and Ives is applied

to the nonhomogenous problem where the "upstream" end of the cylinder is

forced, a harmonic time dependence is assumed; this means that "forcing" the

system by an arbitrary time function will require multiple solutions combined

in the Fourier sense.

To overcome these difficulties, a general purpose numerical approach is

introduced. This approach discretizes n, , n , and by backward and

central differences. This discretization brings the dynamic motion equation

into a system of second order ordinary differential equations. This system is

decomposed into a system of first order ordinary differential equations. A

feasible numerical ordinary differential equation method is then used to solve

this system with optimal efficiency.

There are many advantages to using a numerical method to solve the problem

of dynamic motion. The theory is well developed with respect to consistency,

stabilitcy, and convergence. Numerical methods are systematic to Implement,
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and effective techniques can be used to accurately accelerate computations.

When a numerical approach is used, the laborious evaluation of special

functions is bypassed, maximizing accuracy and efficiency.

This report begins with a description of the dynamic motion problem and

the associated initial and boundary conditions. A numerical approach is

introduced and the supporting theory and mathematical formulation are

discussed. An example is given to demonstrate the validity of our numerical

solution to a well posed dynamic motion problem. The computer programs are

included in the appendix.

2
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2. POSED PROBLEMS

The motion of a wire suspended in a fluid stream, considered by Ortloff

and Ives, 2 can be described mathematically by the partial differential

equation,

a4  a2  +M 
2  2

EI Li + (M + m) a 2+ 2MU at y

ax at ax atax

C T MU21
ax12 axj

7 N at ax (2.1)

where

El - bending rigidity,

M - lateral virtual mass of fluid per unit length of wire accelerated by

the accelerating wire,

m - mass of the wire per unit length,

U a velocity of the free stream,

CT = drag coefficient due to pressure acting on the wire surface,

D a wire diameter,

L a total wire length, and

CN . drag coefficient due to shear forces acting on the wire surface.
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The special case of a zero bending rigidity (or an infinitely flexible)

cylinder is realized by setting El = 0. To express the above equation in

dimensionless terms, use

= (t/L)U , B = M/(M+m) , = x/L

c= LID, n = ylL

The above equation becomes

a2n + a 2n 1 + an (CT + CN)

CB * O (2.2)

The associated initial boundary conditions are described by

n = 0 {= 0 (fixed end condition); (2.3)a

Ini is finite, {= 1 (bounded free end deflection); (2.3)b

n = i ({) ? 0 (prescribed initial deflection); (2.3)c

and

0an 0, r= 0 (zero initial velocity) (2.3)d

Ortloff and Ives solved the problem posed by equation (2.2) using

conditions described in equation (2.3). Their solution is expressed in terms

of Bessel functions.

4
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The initial boundary value problem, equation (2.3), for the partial

differential equation (2.2) is said to be well posed in the sense of

Hadamard if and only if its solution exists, is unique, and depends

continuously on the data assigned. After the problem is formulated using

finite difference and ordinary differential equations, it will be seen that

the problem is well posed. We will seek a unique solution by means of the

numerical techniques presented in the next section. When the boundary

conditions become uncertain, there is not enough information available to

solve equation (2.2); we term this problem ill posed. However, a derived

boundary condition is developed, which is shown to be adequate for our problem.

3. THE NUMERICAL TREATMENT

In search for a general purpose, accurate solution to the well posed

problem (2.2), subject to conditions described in equation (2.3), the method

of attack is to discretize , ,and n by central and backward finite

differences and then to transform equation (2.2) into a system of second order

ordinary differential equations (known as the method of lines4 ). We

discovered that Generalized Adams Bashforth (GAB) methods 5'6 can be used to

solve this system efficiently.

Expressing equation (2.2) in short form and writing u as n gives

Urr + a() u t + but + 2s(u + cu l O, (3.1)

5



TR 6343

where

a(t) ( 1 A.C.(-)

b MI(C~ + yCo), and

c LOC

3.1 FINITE DIFFERENCE DISCRETIZATION

Applying the second order central and backward finite difference !

discretization to equation (3.1) in the 4 direction, we obtain

(u) + a( ) +r+ -2ur (Un~ brnTr n h2 hW( mr Urn1)

+ LO (um - uCU) iO (3.2)

where h - at for index mn - 1, 2,..

A simnplification of equation (3.2) gives

(U + (o+ C)(m, 28 u~)r (

\ h 2)Un7 ] - (ui) h M2 (3.3)

6
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Equation (3.3) is a difference equation, representing a system of second

order ordinary differential equations and is an approximate equation to

equation (2.2).

3.1.1 Consistency

Before we apply the GAB method to equation (3.3), let us examine the

consistency of our finite difference operator £h [u;h]. First, expressing

equation (2.2) in true operator form, we obtain

a2 2
-u - 1_+a) + bL

+ 2o 2 + c I u:O. 3.4)

Next, expanding un+ I and um_1 in powers of h and keeping the first two

pri.ncipal terms, we obtain

U u + h (um)' + h . ., and
m+1~ ~ u rn) m

h2Um_I - um - h(u m)' + (um)"

Therefore,

u m+ - 2um + Um I  (U + 1 h(23(u

h2  m h (3.5)

7
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and

u m  - u n _1  (ur) - (um ) i( .
h ~ ~ -m (3.6)

Substituting the power expansions of um+1 and Um_l into equation (3.2)

and using equations (3.5) and (3.6), we find that equation (3.2) is then

expressed in a difference operator form,

Ch£U;h] ,+ a(k) +

+b 2 a [ 2a2 +cL u=-O
(3.7)

L [u] - h Cu;hJ

_ h2 34  a2 h2 a2

- (-a() Ty_ ' + 2sT T U

It is seen that

lir (L[u] -L [u;h]) * 0.

h*o - h

Therefore, the difference operator is consistent with the true operator in the

sense of Keller7. Thus, the consistency requirement is established.

8
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Now that we have a consistent difference operator, we seek stable

numerical ordinary differential equation methods to solve equation (3.2).

3.2 ORDINARY DIFFERENTIAL EQUATION SOLUTION

To seek the solution to equation (3.2), refer to equation (3.3).

Write au

2 M W; C) V- WM-1

aa(
am [b +a(mu- 2 m-- I- _F- !!( um* h M-1(.

Equation (3.8) is a set of equations that represent equation (3.3) as a

system of first order ordinary differential equations. For illustration,

using m - 1, 2, we can obtain

du In= w1

dr

awl 2o + c wI 2+ aLel 2al)b-h-- - a--4-)]

Tr i 0h 2I Urn-h

du = w2

9
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2aw r)] u2 + u1

In matrix form, the equation becomes

du1  0 1 0 0 uI "

d . h W- h2 + 0

du2  0 0 0 U2

dw 2  b 2o [b- a, 2  (- \ 2 jF - -I TJ--2 ~F+
L (3.9)

where

0 a() T
[gJ h ho 0 hf u

which is in the form

ul - A(,)u + g(4, r, u). (3.10)

The elements contained in the components of the g-vector have the following

meanings.

10
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u0 - top boundary fixed end condition: U0 - 0, - 0;

WO a initial condition: ur - 0, r- 0; and

U3 - bottom boundary bounded free-end deflextion condition:

1u31 is finite at C- 1.

The matrix elements, Ail, of matrix A can be'determined by the following

setups in which we define Atit-j 0 if i-j_ 0 for J - 1, 2, 3.

When index i is odd, A 1t+1 - 1. When index i is even,

A b
1.1- 3  h

A 2s
Ai~_Z - -

1- h2a(

A 9  2o + c

where a(&) is evaluated at a(C), 1-

Now, the problem is to select an effective numerical ordinary differential

equation method to solve equation (3.8). A close examination suggests that

the Generalized Adams-Bashforth (GAB) method offers an efficient solution. In

II
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the present application, because a low order GAB method can do the job, high

order GAB methods are not necessary; hence, first order GAB methods were

developed into computer programs in FORTRAN language. However, the program

package is flexible so that high order GAB methods can be incorporated when

required.

We introduce the first order GAB

n+1 eAh unu . A n + h 1,0 (Ah) % (3.11)

to solve equation (3.10), where

0l,0(Ah) - -(Ah) -1 (I - eAh). (3.12)

The theory with respect to consistency, stability, and convergence has

been very well developed for Nonlinear Multistep (NLMS) methods.8 The GAB

method is a member of the NMLS family. We summarize the theory below.

NLMS methods take the expression.

k eAh(ki) k

1 c i ) Un+I a h 40 Oki (Ah) gn+i" (3.13)

3.2.1 Stability

The characteristic polynomial of NLMS Is defined by

( Ah tO i "  (3.14)

12
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Using the GAB method, the selection of a, is such that

ak - 1, ak_1 - -1. We see that the root of o(wS) has unity and is

simple; therefore, method (3.11) is stable.

3.2.2 Consistency

The GAB method, equation (3.14) satisfies the consistency

condition

r Ilk Ah(k-i) k
1 i, O 1e Ahk i - h ()gn+il - 0 (3.15)

for k - 1, uk - 1 and &k-1 - -1. Therefore, GAB method is consistent.

3.2.3 Convergence

According to the convergence theorem of NLMS methods, *A stable and

consistent NLMS method is convergent." Therefore the GAB method applied to

problem (3.10) is a convergent method.

4. BOUNDARY CONDITIONS

In real applications, at 1. 1, the bounded free end deflexion boundary

condition is expected to be such that q(1,r) is finite. However, the

appropriate function q(1,r) to be used for the boundary condition appears

uncertain in reality. This lack of information defines problem (2.2) as an

ill posed problem. For general partial differential equations, it is always

difficult to formulate correct conditions leading to a well posed problem.

Problems may look reasonable, yet cannot be solved.3  It is hoped that the

13
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bounded free end deflexion boundary condition may be obtained through

experimentation, but the exact mathematical expression for n(1,w) must still

be worked out. We will attempt to change the ill posed problem to a well

posed one so that a solution exists and can be solved by the numerical

techniques we have developed.

In the theory of second order partial differential equations there exists

a class of well posed problems, such as the Cauchy problem for wave equations,

the Dirichlet condition for Laplace equations, and the mixed initial boundary

value problem for heat equations. Our first step is to examine the most

general boundary conditions. Let uN denote the normal derivative. The

first boundary value problem of the Dirichlet type indicates

u- f (4.1)

on the boundary. The second boundary value problem of the Neumann type

indicates

uN = f (4.2)

on the boundary. The third boundary value problem of the mixed type indicates

uN + Ou - f (4.3)

14
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on the boundary. Note that the third boundary value problem is well posed

only for the restricted choice of a. We will assume that the free end

deflexion boundary condition takes the expression

AUN + au - f. (4.4)

When

x - 0, a - 1, (4.4) reduces to (4.1);

- 1, a - 0, (4.4) reduces to (4.2); and

- 1, a arbitrary, (4.4) reduces to (4.3).

In our application, as given by the numerical example in the next section,

-(,()N  n,) , - 0, a 1 1 gives

- f(, ) and If(l, r ) is finite. This gives Ortloff's and Ives'

bounded free end deflexion boundary condition.

The procedure to be followed here for determining a free end boundary

condition is to derive an approximate boundary condition and then to use that

boundary condition to compare the solution with a direct application of the

Ortloff and Ives solution.2 We develop a form of the boundary condition for

the second order partial differential equation by following the approach used

15
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by Paidoussis for his fourth order partial differential equation; that is, by

integrating the transverse momentum equation over a short tapered end which is

attached to the free end in order to generate the required boundary

condition. Paidoussis assumed that the cross sectional area tapers smoothly

from S to zero in a distance (1) sufficiently short that the forces acting on

the tapered end can be lumped and considered in appropriate boundary

conditions. For our present problem the boundary condition is obtained from

L L L
ax ~ )dx

+ MW dx - 0
atL-I (4.5)

where the parts of the equation express rate of change of fluid momentum,

hydrodynamic forces, and cylinder inertia, respectively, and where f is a

factor introduced by Paidoussis to account for the intractable flow conditions

at the free end and V is the transverse velocity of the fluid relative to the

cylinder. Therefore,

at ax, (4.6)

16
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FN 7 ( N (4.7)

T(x) - T(L) + ( ) U2CT (L-x); (4.8)

and T(L) is a consequence of form drag at the free end.

An important assumption necessary to perform the integration is that the

length of the tapered section (1) is small enough that the lateral velocity

(V) may be considered constant over 1. We find

fM4 (4+ U. ~ + fiM (.+ U~

+ .I  +U) + U2CTI a

T(L), a a+ + 0 (12).0

ax at (4.9)

for x - L, all t.

After nondimension of this equation as before and neglecting terms of

order (12) and I , we have
'I

1N a+ [f + C(1)+(TQ] 0

(4.10)

for - 1, all

17
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On physical grounds it is reasonable to neglect CT relative to

CN/4,9 making the final boundary condition

-Lf_ + - 0 for 1, all (,
at 3" (4.11)

which amounts to a "radiation condition"; that is, no reflected energy

exists. In the following sections, we refer to boundary condition (4.11) as

Kennedy boundary condition.

5. A NUMERICAL EXAMPLE

The test example is obtained through linearization of a fourth order

nonlinear cable equation, 10 which is given by

at at ax Y ax (5.1)

where m, M, U take the same definitions as given in section 2. T, C N are

defined as

T
T (L - X), (5.2)

T, "CT w O U2 L, (5.3)

18
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T .a 2  D T, and (5.4)

-C 1M C NU, (5.5)

where CN and CT satisfy the definitions given in section 2.

Assuming a and a commute, expanding equation (5.1) gives
ax at

at A4 a+ 1 E2U 1X + U2 a 2 =T 3+ -N (at
Iat a, O(5.6)

Performing aT and using definitions (5.2) through (5.6), we get
ax

[2uM 2 2 ~1 U U2  1 U 2  2 1 U ayat ax C 7T (L-X)J + M U (C T + C N) + 2U +7NUa

(5.7)

Equation (5.7) is the same as Ortloff's equation (2.1) before

nondimens lonai izat ion.
2

Select

0 .1",
T

M * m 0.00273

U 15 ft/sec

19
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L - 2000 ft

CT = 1.8

CN = 1.1259.

Then,

£ - 48,000

0-1
7.

The solution to equation (5.7) is expressed by

y(t, x) - eiwt

where -f is approximately 21.89 and J (x) initial values are calculated using a

UNIVAC 1108 Bessel function subroutine.
10

The fixed end boundary condition Initially is zero. The free end boundary

condition uses n(1,-) - eiwj (1).

This problem was tested again using Kennedy's free end boundary

condition. Results are surprisingly in agreement with the known solution.

The test results seem to show that the Kennedy free end boundary condition is

adequate. Results are presented in graphic form. Two sets of graphs are

given: one displays In(&,r)I versus ,, the other displays the real ,

versus . Both plots are constructed at , 0.2, 0.8.

20
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0.2 0.2
° .5 4, 1 , I= j, ,, /\
4 .b-..-------- y / \00~

o~~~~~~ o 0 2 3 0 ovs
ij

00 10 20 30 40 50 60 0 10 20 30 40 50 60TIME - 102  TIME 102

Figure 1: Solution magnitude vs time Figure 2: Real part solution vs time

=0.8 =0.8

,.5 I
5 10 20 30 40 50 60 0 10 0 30 40 50 60

TIME "102 TIME "102

Figure 3: Solution magnitude vs time Figure 4: Real part solution vs time

21
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6. CONCLUSIONS

A numerical solution to the dynamic motion of a zero bending rigidity

cylinder in a viscous stream has been introduced. The numerical procedures

developed to obtain the solution are theoretically convergent and

computationally accurate.

For given appropriate boundary conditions and accurate initial values,

this model will produce an accurate unique solution. For uncertain boundary

conditions, this model can be used as a tool to study the boundary effects and

possible to construct the ad hoc boundary conditions.

22
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APPENDIX

COMPUTER PROGRAMS STRUCTURE AND COMPUTER LISTING

COMPUTER PROGRAM STRUCTURE

MAIN
H/I START

5O IFEQ

L NLMS

INTER

L CGJR

GL BC

PADE

L INVERT

L DGJR

25
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ACRONYMS

MAIN main program which controls the setup of inputs and the preparation of

outputs

START supplies the initial values

DIFEQ controls the present r-step and calls for NLMS(GAB) method

NLMS 1st order Generalized Adams-Bashforth method

INVER calls for complex matrix inversion

CGJR complex matrix inversion using Gauss-Jorden reduction

GFN calculates the g-vector

BC fixed end and free end boundary conditions

PADE a rational function approximation for matrix exponentials

INVERT calls for double precision matrix inversion

DGJR double precision matrix inversion using Gauss-Jorden reduction

The user needs to deal with MAIN, START, GFN, and BC. The user need not

be concerned with DIFEQ, NLMS, INVER, INVERT, CGJR, and OGJR.

26
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COMUTER PROGRAM4 LISTING

MAIN
COMMON PEPSPCTPCNPBE-TAFQPAPBPCPDDZIBND
COMMON ACISP19)PT(3)
DIMENSION Y(2,I.8),VZERO(18),YNFW(tB),EXACT(18)
COMPLEX AYPYZEROPYNEWPXXOMGAYSAVEPEXACT

C ***THIS PACKAGE SOLVED A 2ND ORDER P.D.E. BY TH4E METHOD OF LINES AN

C GENERALIZED ADAMS-PASHFORTH METHODS
C ***REFERENCE: ORTLOFF AND YVES
c ** INPUT PARAMETERS HAVE THE FOLLOWING DEFINITIONS:
C ** N = NUMBER OF 2ND ORDER ODE
C ***TMAX = MAXIMUM TAO
C ***TINT = EVERY TAO INTERVAL. TO BE PRINTED OUT
C ** PXY = AT THIS XT- THE OUTPUT IS REQUESTED
C ***FQ - FREQUENCY? NONDIMENSIONAL OMEGA
C ***TBND - BOUNDARY CONDITION INDICATOR
C - 1 BUILT-IN KENNEDY BOUNDARY CONDITION
C = 2 USER-SUPPLIED BOUNDARY CONDITION
C ***PEPS = EPSILON
C ***PCT = C SUB T
C ***PCN = C SUB N
C ***X PBETA = BETA
C ***H - TAO STEP SIZE
C ***READ INPUTS HERE

READ(5.*) NYTMAXTINTPPXIFGPIBND
REAIW(5p*) PEPS~PPCTPPCNPPBETAPH
N-a2*(N-1)
DZ=1 .0/(FLOAT(N/2+1))
PP=0.*5*PBETA*PCT*PEPS
PA=PBETA* (1 *0-PB)
PD=0 *5*PCN*PEPS*PBETA
PC=PB+PD

C ***** TO SET-UP MATRIX A
DO 20 I=1.N
DO 20 Jw1,N

20 A(I.J)-CMPLX(0.0p.0)
PH=PC/DZ
TBH-2**PBETA/DZ
DG--(TPH+PB)
DO 28 I-1,N
IF(I *GEo 4) 00 TO 26
IF(I .EQ, 2) GO TO 25
A(IvT+ )=CMPLX(1 .0,0.0)
GO TO 20

25 J=1/2
X-PBETA* (1 .- .5*PCT*PEPS* Cl *-J*DZ))
A(II-l)-CMPLXC2.*X/(DZ*DZ)-DH,0.0)
AC IpI)-CMPLX(DGpO.0)
A(ItI+1 )nCMPLXC-X/CDZ*DZ) .0.0)
GO TO 29

26 rF(MOD(r.2) *EG. 0) GO TO 27
A(IpI+1)-CMPLXC1 .,0.0)
GO TO 29

27
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27 J=1/2
X=PBETA*(1 ,-.S*PCT*PFPS*(1.-,J*DZ))
A( 1, I-3)=CMPLX(BH,OO)
A( I, -2)=CMPL.X(TP!N,0.0)
A(TwI-i.)=CMPLX(2.*X/(DZ*DZ)-B4,0.0)
A(II)=CMPLX(DGv0.0)
IF(I .EO* N) GO TO 28

28 CONTINUE
T(l1)=0.0

C ***** TO OBTAIN INITIAL VALUES FROM mSTARTO
CALL START(NTPYZERn)
TX=0.0
SAVE=YZERO( N-i)

10 CONTINUE
TX= TX +T TNT
CALL DIFEO(HNTXYYZEROZYNEWPSAVE)

C ***RESULTS IN YNEtJ(I)
C ***Z CONTAINS PRESENT TAO
C ***USER USES ABOVE INFORMATION FOR HIS PLOT

SAVE-YNEW(CN-i)
IPT=IPT+1
IFCIPT .LE* 4) GO TO 8
IF(MOD(IPT91) .EO. 0) GO TO 8
GO TO 100

8 CONTINUE
WRITE(5p1) HqZ

1 FORMAT(/10XP'H ='vE15oBp5XvT =fpE15.Bf)
2 FORMAT(3XFB.2,10XEi5.891OXE15.8)

C ***PRINT OUT EXACT SOLUTION
C THI*S741 PORTION IS FOR TEST EXAMPLE ONLY

CALL START(NPTFEXACT)
DO 100 rIpNv2
NN=CI+1 )/2
DLZ=NN*DZ
WRITE(5,2) DLZY YNEWCI)
WRITE(5v3) EXACT(I)

3 FORMAT(21XPE15.8p10XvE15*8/)
100 CONTINUE

IF(TX *GE* TMAX) STOP
GO TO 10
END

28
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NLMS
SUBROUITINE NLMS(Hr~pNrYN, tSYSAVE)
COMMON PEPSPCT.PCNPPBETAFQPAPPPCFPDZ, INE
PARAMETER KM=18
COMMON A(KMYKM)PT(3)
DIMENSION AH(1(MYKM) ,EAH(KMPKM) .6(1M)
DIMENSION P1((,KM)v(.NTT(KM,I M
DIMENSION Y(2pKM)PYNfKM)
DIMENSION FE(KMPKM)PAI(KMYKM)
COMPLEX AvAHYEAHpGvP1,PHvUNITY~YNvSAVE
COMPLEX FEFA1
DATA IND/O/
IF(IND *GT. 0) GO TO 14
DO 2 I=lpN

DiO 2 J=IPN
2 AH(IlpJ.)=H*A(.TYJ)

TF(N-1) 7P8,7

1fl TOl 9

7 CALL INVEIk(AHpNiAl)
9 Iv(N-'i) 109,11.Y1
11 EAH( 1' 1)=CEXP(AH(1., 1))

G0 TO 14
10 CALL. FArIE(AvH-.EAHvN)

I N r = IN r + I.
14 IF(IS J3iT. 1) 6o To 100o

DiO 1 T=IPN
1)0 6 J=I-N
Pt (Iq-.J=CMPLX(0.0O 0.)
UNIT(ToI..J)=CMPl.X(O.OvO.0)

6 CONTINUE
1 LJNIT( IpI )CMPLX( 1 0p0.0)

100 CONTINUE
C

C * NONLINEAR MULTISTEP STARTS HERE.*
C * EEGINNING SECTTON DOES INITIALIZATTON

DiO 1-42 T=!!.N
132 YN(I)=CMPL.X(C .,0.0)

IF(IS.Br,I) 60) TO 131
DO0 103 I=19N
DO0 103 JI,N

103 PI(Ti.J)=-EAH(T.p+IINTT(IT,.I)

* 1.Sr O~RiFR GAP
Cl * O ~LOP 1059 CAlf~tWATES PHI(1*0)
r LOOP 108 OR 110 COMPUTES FTNAt.. Y(N+1I

Tin 106 J=10N
PH~.cmpI X(0#0.0'0
D1050 K=IN

(4# [. ,WFN (ro.LN, Y v .1

PFT' R 29
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DO 9 1-1 ,N
DO 10 J-lN

C(IPJ)-AA(IPJ)*H/2*O
PP(IJ)-O*DO

10 CONTINUE
CCIvI)-C(IPI)+1 .DO

9 CONTINUE
DO 12 I-1,N
DO 13 J-1,N
DO 14 K=IPN
PP(IJ)=PP(IPJ)+B(IK)*C(KPJ)

14 CONTINUE
13 CONTINUE
12 CONTINUE

IF(M *Ego 0) 0O TO 40
C
C ~P NORM(AH).GT*(.1)p EXP(A) =EXP(A/2**M)**(2**M)*
C

DO 24 I=1,N
DO 25 J=1,N
B(19 J)=0.DO

25 CONTINUE
24 CONTINUE

DO 36 K=lvM
DO 27 I=1vN
DO 28 J=lpN
DO 29 L=1,PN
B(IPJ)=B(IPJ)+PP(IrL)*PP(LJ)

29 CONTINUE
29 CONTINUE
27 CONTINUE

DO 31 I=1,N
DO 32 J=1,N
BB-D(IPJ)
P(IPJ)=CMPLX(BD,0.O)
(I9,))=0.DO

32 CONTINUE
31 CONTINUE
36 CONTINUE

H-HAVE
RETURN

20 H-H/2,0
M=M+1
DO 54 I=19N
DO 55 J-IPN
PP(Iv,J)=0.DO

55 CONTINUE
54 CONTINUE

GO TO 30
40 NNHAVE

RETURN
END

30b~~
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START
SUBROUTINE START(NPTPYZERO)
COMMON PEPSPCTPCNPBETAFQPAPBPCPPDPDZIDND
COMPLEX YZERO(1)
DIMENSION T(1)

C ****** USER SHALL REVISE THIS PORTION TO INCORPORATE HIS INITIAL VALUE
S
C ......... YZERO(I) CONTAINS THE FUNCTION
C ......... YZERO(I+1) CONTAINS THE DERIVATIVE

DO 29 LP=1PNv2
DLZaDZ*(LP+1 )/2
IFCLP*EG*) YZERO(LP)-CEXPCCMPLX(0.0,FQ*T(l)))

* *CMPLX( .99546739,- *73021506E-01)
IF(LP*EG*3) YZERO(LP)=CEXP(CMPLX(0.0,FQ*T(1)))

* *CMPLX( .996024359-. 14547502)
IF(LPoEO.5) YZERO(LP)-CEXPCCMPLX(0.0,FQ*T(1)))

* *CMPLX( .97172089,-.21705468)
IF(LP*EQ.7) YZERO(LP)-CEXP(CMPLX(O.OFO*T(l)))

* *CMPLX( .96262427,-#29745766)
YZERO(LP+1 )=YZERO(LP)*CMPLX(0.0,FO)

29 CONTINUE
RETURN
END

GFN
SUBROUTINE GF(PPPPPPPAE

C ***THIS HANDLES THE G VECTOR
C ***0 VECTOR CONTAINS BOUNDARY INFORMATION

COMMON PFSP~PNPEAFPAPPCPvZIN
COMPLEX A(1B,19),Y(2v1B).G(1B)PSURFBOTTXAPXBPSAVE
DIMENSION T(1)
DATA PIZEROONE/3.1415926535,0.0pi.0/
DO I IziN

I G(T)-CMPLX(0.0P,)
C ***** FIRST ARGUMENT Or CALLS FOR FIXED END CONDITION

CALL 9C(0,NpHpTvYvSAVErSURF)
G (2) -PC*SIJRF/DZ+2. *PBETA*CMPLX (0 0,FtO) *SURF/DZ

C ***** FIRST ARGUMENT 1, CALLS FOR FREE-END CONDITION
CALL BC(lrNrHTpYvSAV,1BOTT)
X--PBtETA*(1 .-5*PCT*PEPS*(I .-(N/2)*DZ) )/(DZ*DZ)
G(N)-CMPLX(XPOO)*BOTT
RETURN
END
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1INVERT
SUBROUTINE INVERT(APNPANS)

C
C MATRIX INVERSION SUBROUTINEP CALLED BY PADE OR NLMS*
C * A CONTAINS THE ORIGINAL ELEMENTS AND REMAINS UNALTERED
C ANS CONTAINS THE A**(-l)
C * THIS SET-UP IS USING UNIVAC 1109 MATHPK EXISTING DOUBLE
C PRECISION GAUSS-JORDAN REDUCTION
C * THIS PROGRAM Is REPLACEABLE BY THE USER*
C

DOUBLE PRECISION A(1B,18)vANS(18v18)vV(2)
DIMENSION JC(1S)
DATA NR/18/PNC/19/
V(1)=1.D0
Do 1 IinlN
DO 1 J=1?N

I ANS(IPJ)-A(IPJ)
CALL DGJR(ANSPNRPNCPNPNPMDEXPJCPV)
IF(MDEX *ED* 1) 60 TO 10
RETURN

10 WRITE (4p2)
2 FORMAT(3XP22HMATRIX INVERSION ERROR)

RETURN
END

I NVER
SUBROUTINE rNVER(APNPANS)
PARAMETER NDIM-1B
COMPLEX A(NDIMNDIM)PANS(NDIMNDIM),V(2)
DIMENSION JC(NDIm)
DATA NR/NDIm/FNC/NDIm/
V(1 )=CMPLX(1 .0v0.0)
DO 1 I=1PN
DO 1 J~lpN

1 ANS(rpJ)-A(I,J)
CALL CGJR(ANSPNCPNRPNNMDEXJCPV)
TF(MDEX *EQ. 1) GO TO 10
RETURN

10 WRITE (4p2)
2 FORMAT(3X,11HMAT INV ERR)

RETURN
END
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DGJ R
SUBROUTINE DGJR(APNCPNRNPMCPMDEXtJCU)
DIMENSION JC(N)PV(2)
DUIENSION A(NRPNC)
DOUBLE PRECISION APVPXPDLOG

'I-1
S-10
L=N+(MC-N)*( IW/4)
(D-2- mODIk/2P2)
IF(KD*EQ,i) V(2)=0,

GO TO C5,20)rKI
5 DO 10 IinlpN
10 JC(ZlinX
20 DO 91 X1,pN

21 00 TO (22p2i)vKI

22 IF (I.EQ.N) G0 TO 60
X*-10
DO 30 JinIN
IF (X*GT.ABS(A(JI))) GO TO 30

K-J
30 CONTINUE

IF(K*EQ.I) GO TO 60
Sm-s
VC1)in-V(1)
G0 TO (35,40),KI

35 mu-Jc(I)
JC(I)-JC(K)
JC(K)=MU

40 DO 50 J=MPL
X=ACIpJ))
A(IPJ)=A(KJ)

50 AKJ=
60 IF (ABS(A(rrr)).GT.0.) 0O TO 70

IF(KD*EG#1) V(1-0.

RETURN
70 GO TO (7lp72)PKD

Y(2)=Y(2) + DLOG(AE'S(AIPI))
72 )(mA(IfI)

A(II)=1.
DO 80 J=ML
A(IJ)=A(TJ)/X
CALL ERRTST< 72PROEX)
IF(MDEX.EQ.1) 00 TO 150

so CONTINUE
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DO 91 K=1,N
IF (K*EQI) GO TO 91
X=A(K, I)
A(Kpl)=O.
DO 90 J =MPL
A(KPJ)=A(KvJ)-X*A(IPJ)
CALL ERRTSTC72PMDEX)
IF(MDEX.EQ.1) 0O TO 150

90 CONTINUE
91 CONTINUE

GO TO (95P140)PKI
95 DO 130 J=1,N

IF(JC(J),EQ.J) GO TO 130
JJ=J+1
DO 100 I=JJPN
IF(JC(I)#EQ.J) GO TO 110

100 CONTINUE
110 JC(I)=JC(J)

DO 120 K=1,N
X-A(KI)
A(KvI)=A(KPJ)

120 A(KPJ)=X
130 CONTINUE
140 JC(1)=N

IF(KD.EG.1) V(1)=S
RETURN

150 JC(1)=--
IF(KD#EQO1) V(1)inS
RETURN
END
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CGJ R
SUBROUTINE CGJR(APNCPNRNMCvIFLvJCV)
DIMENSION Jc(l)
COMPLEX CLOGPVPXCPA(1B,1B)
COMPLEX Z
INTEGER*2 NERR
NERR-72
IFLO0
IW-V
V-(O. ,0)
IBITO0
M-1
L-N+(MC-N)*(rW/4)
KD-2-MOD( IWt/2v2)
KIin2-MOD(Ii,2)
0O TO (5p.20)pKI

5 DO 10 I=1,N
10 JC(I)=I
20 DO 91 IinlpN

GO TO (22v21)pKI
21 M=I
22 IF (I*EQ.N) GO TO 60

X-1.
DO 30 J=IPN
ANORM-ADS(REAL(A(JIr)) )+ABS(AImAG(A(JI)))
IF(X*GT.ANORM) 0O TO 30
X-ANORM
K=J

30 CONTINUE
IF(K.EO.I) GO TO 60
iBIT=IBIT+l
GO TO (35v40)pKI

35 MU-JC(I)
JC(I)=JC(K)
JC(K)=MU

40 DO 50 J-MvL
XC=A(IPJ)
A(IPJ)-A(KPJ)

50 A(KPJ)-XC
60 ANORM-ADS(REAL(A(II)))+ABS(AIMAG(A(II)))

IF(ANORMGT.0) GO TO 70
V-CO. ,0.)
Jc(1)-I-1
RETURN
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70 630 TO (71,72),KD
71 VmV+CLOO(A(Ipl))

Z-CLOG(A(I'I))
72 XC=A(IPI)

A(XX)in(1. p0)
DO 80 J-MPL

CALL ERRTST(NERR, IFL)
IF(XFL*EO.1) GO TO 150

90 CONTINUE
DO 91 K-1,N
IF (K*EG*I) GO TO 91
XC=A(KpI)
A(KpI)=(0. rO#)
DO 90 J -M,'L
A(KJ)-A(KPJ)-XC*A(IJ)
CALL ERRTST(NERR, IFL)
IF(IFL*EQ.1) 00 TO 150

90 CONTINU
91 CONTINUE

6O TO (95P140)YKI
95 DO 130 J=1,N

IF (JC(J)*EGoJ) GO TO 130
JJ=J+1
DO 100 I=JJvN
IF (JC(I).EQ.J) GO TO 110

100 CONTINUE
110 JC(I)=JC(J)

DO 120 K=1,N
XC=A(KPI)

120 A(KPJ)=XC
130 CONTINUE
140 JC(1)MN

V=Y+(0.,3.14159265)*CMPLX(FLOAT(moD(IBITP2) ) P0)
RETURN

150 Jc(1)1l-I
RETURN
END
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BC
SUBROUTINE BC(JPNPHPTYPSAVEvX)

C **** THIS SUBROUTINE SUPPLIES THE FREE-END BOUNDARY CONDITION
C **** USER HAS AN OPTION TO SUPPLY HIS BOUNDARY CONDITION
C * IN THIS CASE, STATEMENT AFTER 2 SHOULD BE REPLACED BY USER'S
C CONDITION

COMMON PEPSPCTPCNPPBETAFOPAPPBPPCPDDZ,IBND
DIMENSION T(1)
COMPLEX Y(2,1S),X
IF(J .GT. 0) GO TO 10

C ***** FIXED END BOUNDARY CONDITION
X=CEXP(CMPLX(O,0,FO*T(1)))
RETURN

10 CONTINUE
GO TO (1,2p3),IBND

C ** RMKENNEDY BOUNDARY CONDITION

C $ U +U =0
C T Z
C ******************

1 CONTINUE
X=(H*Y(1,N-1)/DZ+SAVE)/(1.0+H/DZ)
RETURN

C ***** USER SUPPLIED BOUNDARY CONDITION
2 CONTINUE
X=CEXP(CMPLX(O.OFQ*T(1)))*CMPLX(.92986196,-.35670799)
X=CMPLX(1.O,0.O)
RETURN

3 CONTINUE
IF(PBETA .NE. 1.0) 00 TO 31
X=Y(1,N-1)
RETURN

31 XYZ=I.+(PCT*PEPS*PBETA*DE)/(2.*(1.-PBETA))
X=(CMPLX(1o/XYZO.O))*(CMPLX(1.+XYZO.O)*Y(1,N-1)-Y(1,N-3))
RETURN
END
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SUBtROUTINE DIFEO(HP NTMAXY vYZERO ,ANORM, YNSAYE)
COMMON PEPSPPCTPPCNPPBETAFOvPAP~PPCPDDZ, IBND
COMMON A(l9u18),T(3)
COMPLEX( Y(2,18)vYNC1B),YOLD(2,1B),YZERO(18),ASAVE
DO0 40 L=1,N

40 Y(1,I =YZERO(I)
IH.0
TZERO=T( 1)

60 TEA=T(1)+H
IF(TEA.GT*TMAX) H=TMAX-T(1)
IF(TEA.GT.TMAX) 1H0O
IF(TEA*GT*TMAX) GO TO 60
IH-IH+1
IF(IH .GE* 32767) IH=2
T(2)=T(1I)+H
I MP= 2
DO 62 JslIMP
DO 62 IinlN

62 YOLD(JvT)-Y(JpI)
CALL NLMS(HYOLDvNPYNPIHPSAYE)

59 DO 66 IinlvN
Y(2,I)=YN(I)

66 YOLD(2pI)=YN(I)

* RESULTS YCTEA) IN YN(I) AND Y(2pI)*

ANORM=TEA
DO 85 11,PN
Y( 191 )Y(2u I)
YZERO( I)=Y( 1,1)

85 CONTINUE
T( )=T(2)
TZERO=T ( )
IF(ABS(TEA-TMAX).L.,(.1E-5)) RETURN
GO TO 60
FND
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PADE
SUBROUTINE PADE(APHiPPN)

C ***A RATIONAL APPROXIMATION OF MATRIX EXPONENTIALS
C ***DOUBLE PRECISION IS NEEDED FOR REQUIRED ACCURACY

PARAMETER NM-18
COMPLEX A(NMNM)PP(NMvNM)
DOUBLE PRECISION AA(NMNM)PPCNMNM)PB(NMNM)vC(NMPNM)vHAYE
DOUBLE PRECISION CC(NM),COLXNORM
HAVE=H
DO 2 I=1,N

DO 1 J=1,N
B(IPJ)=0*DO
C(IPJ)=O*DO
Pp(IJ)0.*DO
AA(IvJ)-DBLE(REAL(A(IJ)))

1 CONTINUE
2 CONTINUE

DO 17 I-1,N
COL=O.DO
DO 16 J=1.N
COL=DMAX1(COLDABS(DBLE(REAL(A(IPJ)))))

16 CONTINUE
CC(I)=COL

17 CONTINUE
XNORM-CC( 1)
DO 1S I=1,N
IF(XNORM .GT. CC(I)) GO TO 18
XNORM=CCC I)

18 CONTINUE
C
C COLUMN NORM IS USED TO SEE WHETHER EXP(A) NEEDS REDUCTION *
C

m=0
30 IF(XNORM*H - 0.98) 3,20,20

C
C * EXP(A)=(I-.5*A)**(-1)*(I+#5*A)*
C

3 DO 6 r11,N
DO 5 J=1,N

DO 4 KinlN
PP(Ip'J)=PP(IJ)+AA(IK)*AA(K'J)

4 CONTINUE

C(ICONTAAIUE H2#

6 CONTINUE

CALL INYERT(CPNB)

39/40
Reverse Blank
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